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Abstract

In this paper we present an interpolation projector by modifying
a previous construction of a compact support convolution splines par-
tition of the unity to produce an interpolation projector without the
restriction that the partition of the interval be uniform.

We have been able also to substitute convolution by translations
and dilation (the techniques of wavelet).
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1 Introduction

This paper deals with a class of splines which are of compact support and I
will start making some definitions which do not contradict the usual defini-
tions but add to more elegance to paper if the reader accepts them without
constraints.

Definition 1 0-splines

0-splines are linear combination of characteristic functions of intervals.

This is a simple addition to the usual definition and the reader will see
in a few lines more that this closes a gap in class of splines and enhances the
use of convolution.

One such linear combination need not to be continuous but it agrees
nicely with differentiability condition one should expect provided we do not
try to say they are of class “0− 1” (and we are not), one unity less that the
dimension. I shall only say that 0-splines are not necessarily continuous.

Definition 2 Kernel-splines

Is the characteristic function of an interval of measure 1 or a convolution

power of one such characteristic function or a dilation of any of the previous.

Again here, the lowest level class of splines is made of non continuous
funtions, the characteristic functions of intervals.

This definition is biased to the needs of this paper. By kernel one un-
derstand a positive function whose integral is one and we can easily create
a positive splines function, of compact support and whose integral is one,
which is not the convolution power of a characteristic function of an interval
of measure one. Take to triangle functions having integral one, they are not,
clearly, convolution of a characteristic function of an interval of measure one.

So I have defined as kernel something which is a particular type of kernel.

Definition 3 Splines with compact support

Is a linear combination of characteristic functions or the convolution of

one such linear combination by a kernel-splines.

O-splines are included in this definition.
I have not been able characterize all splines of compact support starting

from this simple atom represented by the kernel splines. This seams to be a
nice question.



2 Partition of the unity associated to a non-

uniform partition

Let me consider in this section a partition of the interval [a, b] which is not
uniform.

Let me define

Definition 4 Deficit of a partition

Is the least length of the sub-intervals in the partition.

So we have a finite strictly increasing succession of nodes

a = x1, . . . , xk, . . . , xn−1 = b (1)

∆x is the deficit of the partition (2)

x0 = a − ∆x ; xn = b + ∆x (3)

(4)

that is, I am imbedding the partition of [a, b] in a bigger one of the interval
[x0, xn] with the same deficit.

Now I will define a set of 1-splines of compact support in the following
way

for k=0 to n-2 (5)

fn is the triangle function determined by (6)

(xk, 0), (xk+1, 1), (xk+1, 0) (7)

(8)

that is, for each three nodes in sequence, I will draw a straight line starting
from the x-axis, at the point xk, to the line y = 1 above the next point
and again a straight line starting from this point on y = 1 back to the next
node on the x-axis. The algebraic (formal) definitions of these equations
are important but this geometric explanation together with the picture (1)
page 3, is much easier to understand. I will not have a direct use of formal
definition of these equations in the rest of the paper, and do not forget these
are compact support 1-splines each having as support two consecutive sub-
intervals of the partition.
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Figure 1: A set of 1-splines

Theorem 1 C0 partition of the unity The sum all over the function fn is

one on [a, b] collapsing to zero outside the interval [x0, xn] hence a C0 finite

partition of the unity subordinated to an open cover of [a, b].

Dem : As the sum of two function of first degree is a function of degree less or
equal to one, thus its graphic is a straight line. For each pair of consecutive straight lines
the end points are alternatively on y = 1 or y = 0 then sum will be over the line y = 1.

q.e.d .

If we consider now the points

(xk, yk) ; k = 1 · · ·n − 1 (9)

the functions

n−1∑

k=1

ykfk (10)

is the linear interpolation of the points in equation (9). The proof of this
fact may easily done with geometric considerations similar to those we have
used in the proof of the previous theorem, sum of straight lines is a straight
line again.

This also proves the theorem

Theorem 2 Basis of Spl-1([x0, xn])
The set of functions (fk)

n−1
k=1 is a basis for the vector space of 1-splines of

compact support [x0, xn].

We have, thus, an interpolation projector induced by this partition of the
unity.



Theorem 3 Interpolation projector

The operator defined on Cn
c ([x0, xn]) by

P(f) =
n−1∑

k=1

f(xk)fk (11)

is a projector of the space Cn([a, b]) onto Spl-1([x0, xn])

Dem :
P is linear operator, of order 2, hence a projector, which has the identity as fixed point

(which is a consequence that is generated by a partition of the unity.

q.e.d .

3 An interpolation projector

In this section I shall prove the following result:

Theorem 4 Interpolation projector associated to non-uniform partitions

Let Π be a partition of [a, b] as in the previous section with the two external

nodes x0 = a − ∆x, xn = b + ∆x, where ∆ is the deficit of the partition Π.

There is finite Cn-partition of the unity subordinated to an open cover [a, b]
which is the basis of the space Spl-n([x0, xn]) of all n splines with compact

support [x0, xn] and an interpolation projector of a space of continuous func-

tions with compact support [x0, xn] onto Spl-n([x0, xn]). There is, moreover

an element of Spl-n([x0, xn]) which is interpolates the points

(x1, y1), · · · , (xn−1, yn−1)

I need the lemma

Lemma 1 There is Cn-splines kernel with support [−∆x
4

, ∆x
4

]

Dem :
Call η the n + 1th convolution power of χ[− 1

2
, 1

2
] is Cn-splines, but the supp(η) will be

[−n
2
, n

2
] as each convolution adds together the supports.

Define ρ such that nρ

2
= ∆x

4
.

The dilation of η by r = 1

ρ

ηρ(x) = rη(rx)

is the desired kernel-splines. q.e.d .



Now consider the C0-partition of the unity defined in the (6) .
The convolution of fk with the splines-kernel ηρ produces the family φk.

Lemma 2 The family φk = ηρ ∗ fk is a Cn-partition of the unity for the

interval [a, b]

Dem : The class of differentiability is well know consequence of regularization by

convolution. As the function fk adds to 1 on [a, b] then ηρ ∗ fk will to sum up to 1 on

[a, b]. q.e.d .

Lemma 3 The splines ηρ ∗ fk are linearly independent

Dem :
Because convolution and translation commutes, then ηρ ∗ fk are translation of a fixed

one splines among this family of splines.

q.e.d .

These lemmas proves that the family φk = ηρ ∗ fk spans a vector space of
splines with compact support [x0, xn] hence they defines in the same manner
of theorem an interpolation projector of a space (this is a very interesting
point) of any space of continuous function over Spl-n([x0, xn]).

Given the points

(x1, y1), · · · , (xn−1, yn−1)

we have an element of Spl-n([x0, xn]) which is

n−1∑

k=1

ykφk

is equal to yk on xk because there is exactly one function of the family
(φk)

n−1
k=1 which is non-zero on xk because the support of ηρ measures ∆x

2
and

the deficit of the partition is ∆x, hence these are the precision points of this
interpolation.

4 Final remarks

A simple but powerful result is that all the material in this paper can be
easily extended to non-polynomial splines. Take kernel η as an arbitrary one
of class C∞ for example.



The last theorem also has an indefinite expression regarding the domain of
the interpolation operators. This open the question to many possible results
(or to new proofs of old results) of approximation of arbitrary continuous or
differentiable functions by splines.
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