
Python program to solve ordinary differential

equations

Praciano-Pereira, T ∗

Sobral Matematica

17 de agosto de 2020

préprints da Sobral Matematica

no. 2020.10

Editor Tarcisio Praciano-Pereira

tarcisio@sobralmatematica.org

Resumo

Neste trabalho estou apresentando três classes escritas em python para

lidar com operadores diferenciais e encontrar soluções aproximadas de

equações diferenciais ordinárias. O trabalho está em andamento mas já é

posśıvel obter alguns resultados. O verdadeiro objetivo é fazer simulações

com operadores diferenciais, a solução aproximada das equações é um

subproduto.

palavras chave: equações diferenciais ordinárias, operador diferencial,

programas em python.

In this paper I am presenting three python classes to deal with diffe-

rential operators and to find approximate solutions of ordinary differential

equations. This is work in progress but some results have already proven

the work is useful. The main goal is to make simulations with differential

operators, the approximate solution is a byproduct.

keywords: differential operator, ordinary differential equations, python

programs

∗tarcisio@sobralmatematica.org

1

Este artigo ainda está sendo redigido e quando atingir a sua versão final,

esta observação irá desaparecer. E porque publicar uma versão em produção?
Porque esta página é de préprints portanto contém trabalhos com os quais os

autores almejam uma publicação futura e nos quais os autores se expõem na

esperança de encontrar uma colaboração.

This paper is still been prepared and when ready this information will be

dropped. And why publishing a production version? This is a preprints page

and this means the papers published here are expected to be published in a final

form elsewere but in the mean time the authors are exposing a work in progress

expecting to find a colaborator.

Uma outra razão desta observação inicial é de organização da página, estou

neste momento apenas reservando um número de publicação, um aviso para os

que visitarem a página que este artigo está sendo escrito. Quando pronto, este

aviso desaparecerá.

Another reason for this is organizational, the page is reserving a number of

publication and in addition to that an anouncement that the paper is in produc-

tion but about to be finished. When the paper is finished, this anouncement will

disapear.

1 Basic functions

This paper is a manual to explain the functions of the modules used in the
python program ODEWithPython.py and at the same an invitation to collabo-
rative work or a more ambitious goal, to expose the work to nice critic people.
If you come up to this paper to understand the the classes used in my programs,
jump to the section 3 where they are directly explained.

The classes directly involved with this project are
ambiente.py, funcoes.py, gnuplot.py, nucleo, operadores.py,

which can be download from [2]. These programs are distributed under GPL

with the version of your choice.
Let me introduce a short cut in the notation, as I am using to often the

function χ[0,1] I will denote it with only the symbol χ.
Some of the methods in these modules have been constructed in the paper [1]

in which an algorithmic construction have been described of the powers of χ
and I am using here one of these convolution power of χ, which is a kernel with
support [0, n], named Qui() and defined at funcoes.py. As I need an atom

which is a parcel of the partition of the unity to construct an interpolation
projector, the following mathematical operations are needed and are translated
into algorithms at funcoes.py:

η(x) = 5Qui(5x); to have support [0, 1] (1)

pre atom(x) = η ∗ χ; to have support [0, 2] (2)

atom(x) = pre atom(x+ 1) = atom0; to have support [−1, 1] (3)

Of course, I could have defined atom(x) = 5 ∗Qui(5x) ∗ χ to have an atom
with support [0, 2] but it is easier to break down this operation into small steps

1 THE BASIC FUNCTIONS 2

to have all calculations done correctly, and more over, I can test the intermediate
results looking to the graphic.

I have tried to use a computer algebra program but the results were not
satisfactory to the particular case, so the work has been done with brute force

Calculus level integrations, instead. I have to acknowledge that I have been
using computer help heavily since the integrations were mainly done by using
the facilities of text edition and to verify that the integration in each step was
correctly done I have used gnuplot to make the graphic in each and every
single step, this explain the name of one of my modules gnuplot.py used to
call gnuplot from inside my programs.

In fact you can see all the work done at the python modules mentioned
above as I have not cleaned up the intermediary results leaving many of them
as comments.

Again, to have the convolution η ∗ χ it is easier to calculate its derivative
and then the primitive:

(η ∗ χ)′ = η ∗ (δ0 − δ1) = η0 − η1 = η − η1; (4)

atom(x) =
∫ x

0
(η ∗ χ)′(t)dt = (η ∗ χ)(x) (5)

this is an easy trick that I have learned when working at the paper [?]. This is
a property of any convolution power of χ, when the power n ≤ 2, namely

(χn)′ = (δ0 − δ1) ∗ χ
n−1; (6)

to prove, write
χn = χ ∗ χn−1; (7)

and use the property of the derivative of convolutions,

(f ∗ g)′ = f ′ ∗ g = f ∗ g′;χ′ = δ0 − δ1; (8)

The integration of the last equation is easier to calculate than the one of the
convolution in the first equation. This explains the work done at funcoes.py to
produce atom(). Remark that η0 and η1 have disjoint support hence the integral
of their difference is the difference between their integrals. This happens to be
consequence of the selection of the support of η.

The work is done for an integer partition of the interval [0, n] which can
be later translated to any uniform partition of an arbitrary interval [a, b] using
wavelet-type dilation and translations. This is a kind of selection of an easy

language, to work with intervals of unity lenght is very easy all the calculations
fit well with all the above properties.

Since η is symmetric around the central point of its support 0.5 then atom =
η ∗ χ is symmetric around the central point of its support 1, support(atom) =
[0, 2], and the summation over a set of n translations (atomk)

n−1
k=−1 may be

written putting η in factor, as convolution factor, of the summation of the
translations (χk)

n−1
k=−1. This summation of integers translations of χ is an almost

constant function, almost always 1, with discontinuities of first kind on the
integers of the interval [0, n] where it jumps to 2 hence the convolution with η

regularize it to the same class of continuity of η which is a 5-splines. This proves

2 THE PROOF OF CONVERGENCE 3

Theorem 1 (Partition of the unity) Partition of the unity The integer trans-

lations (atomk)
n−1
k=−1 form a partition of the unity of class C4 whose elements

are 4-splines subordinated to to the open cover of ((k − 1, k + 1))
n

k=0 of [0, n].

The functions members of the partition of the unity described by theorem
1 being symmetric around the central point of its support have the value 1 on
this central point. By construction their supports expand over two successive
intervals, this makes the summation

φ(f)(x) =

n∑

k=0

f(k)atomk(x) (9)

resumed to exactly two successive atoms in whose support x lies. So, no matter
how big may n be, I have a fast algorithm.

2 Proof of convergence

I though that I have found a more advanced method, to calculate approxi-
mate integrals. This is indeed false as the following proof will show, but as a
collateral and nice result, I can prove the convergence of the algorithm.

To express formally the integral of the projection is easy and straightforward,
as Φ(f) is a linear combination of translates of the 5-splines

atom = (x 7→ 5Qui(x)) ∗ χ (10)

where I am using lambda-function-style-syntax at equation (eq. 10) to “remove”
the variable x of the expression 5Qui(x)). Hence there is only one integral to
calculate because I am dealing with uniform partitions (and in case I would not,
there would be a wavelet-type-change-of-variable, again reducing the integrals
to only one).

x ∈ [xN+1, xN+2];
x∫
a

PU(f)(t)dt = (11)

=
x∫
a

N∑
k=0

f(xk+1)
xk+1∫
xk

atomw(t)dt+ f(xN+2)
x∫

xN+1

atomw(t)dt = (12)

=
N∑

k=0

f(xk+1)Aw + f(xN+2)
x∫

xN+1

atomw(t)dt = (13)

= Aw

N∑
k=0

f(xk+1) + f(xN+2)
x∫

xN+1

atomw(t)dt (14)

proving that this is equivalent to Riemann sums, where Aw is the integral of
atom under dilation to a subinterval of the partition of [a, b] under consideration.

As this is equivalent to Riemann sums then its use will not provide a better
algorithm to calculate approximate integral, at least not better than the known

3 THE MODULES 4

algorithms. So I have switched back to the previous operator RiemSpl() in this
work.

Incidentally this proves a kind of convergence of the algorithm I am cons-
tructing. It remains to associate this calculus to Sobolev type of convergence
which will be my future work which is supported by the computational results
I have reached and displayed at the end of the paper.

3 The modules

Next we shall explain the methods in each of the modules of the program.
The main program is executa.py which is going to use the modules gnuplot.py,
operadores.py, nucleo.py. We shall not discuss ambiente.py, funcoes.py

because we think they are self explanatory and, at the end, you can use the
methods defined in them without understanding them as if they were python

commands, anyhow we are convinced there is enough explanations through the
comments, be sure, you are welcome with your questions about these classes
and we are quite sure of our gains with your point of view.

3.1 gnuplot.py

This a service module which is used to help with graphics any program which
may need. The user need to know of

grafun(),grafun2(),grafun3(),grafun4(),grafun5()
where grafun() may plot the graphic of one function and grafun5() may do
it with 5 functions. We have to call the appropriate method and the syntax is,
in case of grafun3(),

grafun3(f1,f2,f3, init, end, number points, message);

to plot the graphics of three functions on the interval [init, end] with the po-
sitive integer number points, using message as title, which has to be a string.
Similarly for the other grafun-methods. It is going to call two other inter-
nal methods to produce the temporary files dados1, dados2, dados3 each
with the matrix to plot the graphic of the corresponding function and the file
transfere3 with the appropriate commands for gnuplot. This way you can
replot the graphic issuing the command:

gnuplot transfere3

at a terminal window. You can edit these files and rename them for later as
each time you will run the program they be rewritten. All you have to do, to
use the methods of gnuplot.py, is to include the commands

from gnuplot import *

at beginning of your python program. See executa.py as an example. But be
aware that this program is in fact a script so its version at [?] can be changed
at any moment. The objective with it is exactly to call in ordered way the
methods to produce an algorithm.

3 THE MODULES 5

3.2 nucleo.py

Contains the definitions of kernels, basically two, Qui() which is the fifth
convolution power of χ[0,1] and its four successive derivatives

d1 Qui(), d2 Qui(),d3 Qui(),d4 Qui()

eta, rho, atom as described in the initial section.
There are several methods which are need do define Qui() which we have bor-

rowed from the program [?, convolution power.calc] needed to construct the
convolution powers of χ[0,1] but to reproduce the work in this paper all you need
is to run main(n) with the appropriate value for n and convolution power.calc

will print the matrix of this power to be used in a python program in a manner
similar we are doing here with Qui(). Put this power instead of Qui() and you
are done. Questions are welcome.

3.3 operadores.py

This is perhaps the best part of this work putting aside the construction
of convolution powers which is the underlining work. Most of the operators
defined in this module are self explained with comments, let us explain two of
them which are directly used in this work.

3.3.1 RiemSpl

This a method to calculate approximate integrals using quasi-splines, which
are piecewise degree three polynomials whose derivative is not necessarily con-
tinuous. It is well suited to calculate approximate integrals but we are going to
use it directly here. It uses a number, internally, to partition the interval and
creates the degree three polynomial with help of the convolution derivative at
the node points. We have used this in previous version of this work and it was
proven to be very fast to calculate primitives. So to heat up your appetite to
understand RiemSpl let me put here the basic use of this method in our work:

F(x) := RiemSpl(f, a, x); (15)

F (x) =
x∫
a

f(t)dt; (16)

where (eq. 3.15) is a fake python command to define F (x) but which shows the
Mathematics which is genuinely put at equation (eq. 3.16), and you may want
to try

grafun2(F,f, a,b, 1000, "f and one of its primitives F");

or perhaps best
grafun3(G, F,f, a,b, 1000, "f and one of its primitives F");

to have the program to plot G,F, f where G is a primitive of f which you have
taken from an integral table. The number ⁀1000 will be number of points that
grafun3() will use to make a uniform partition of [a, b] to create the matrix
for the graphic and RiemSpl() will use an internal constant, usually 10, to split

4 COMPUTER RESULTS 6

further each subinterval to calculate three degree polynomial approximations of
F . We bet will be surprised.

4 Computer results

At the time of this writing,10:58 of Monday, October 21 2013, we have ran
the program at home computer starting at 08:44 of Monday, October 21 2013,
the program has been running for roughly 1:47 hours (47 minutes), this proves
that either we are working at a very weak computer, which is indeed true, or
that the program has to be optimized and we are also sure that this is true.

The results obtained were:

1. The graphic at the figure figura (Fig. 1) page 6, where the graphics of

Figura 1: Four graphics

4 COMPUTER RESULTS 7

f, Riemdf, PUdf, df are displayed and let me rapidly describe the meaning
of this notation,

(a) f(x) = ex is the data in the differential equation solved by the pro-
gram as proposed at the beginning of the paper.

(b) Riemdf is the output of the operator Riem() which was our option
in this paper to calculate approximate integrals. This is primitive
of the solution of the equation obtained with Riemann sums. This
is one of the reasons of the law performance of the program. The
module calculating primitive using splines is not working, we found
some bugs in it recently.

(c) PUdf is the output of the operator “partition of the unity projec-
tor” applied to the solution of the equation, hence this produces an
approximation of the solution.

(d) df is the formal (exact) derivative of f .

2. the figure (Fig. 2) page 8, displays a very near zoom of the previous image
showing how the work has been done. The error is very big as expected by
the choice of the equation, remember that this work is to test the method.

3. Calculus of the norm:

Norma = || 127.386952 , 521.141738 || = 648.528690

this is the output of the program. In each cycle, in the construction of
the graphics, the maximum value of the difference of respective pairs,
(f, Riemdf) and (PUdf, df) among the four functions has been calculated
and finally written down at the file containing the commands for gnuplot
making me possible to retrieve the value to put here.

The python programs cited here are published at [?, ODEWithPython.tgz]
you can find them with the names listed here. The version mentioned here
is not last one, this is work in progress.

REFERÊNCIAS 8

Figura 2: Zoomed image of “four graphics”

Referências

[1] A.J. Neves and T. Praciano-Pereira. Convolutions power of a characteristic
function. arxiv.org, 2012, April, 22:16, 2012.

[2] Tarcisio Praciano-Pereira. Cálculo Numérico Computacional. Sobral Mate-
matica, 2007.

